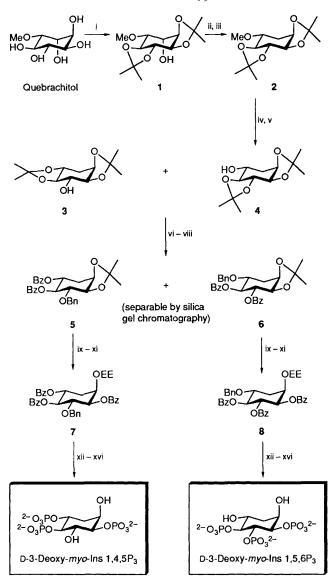
1638

Synthesis of D-3-Deoxy-*myo*-Inositol 1,4,5-Trisphosphate and its Effect on Ca²⁺ Release in NIH 3T3 Cells

Markus J. Seewald, ^a Ibrahim A. Aksoy, ^a Garth Powis, * ^a Abdul H. Fauq^b and Alan P. Kozikowski*^b

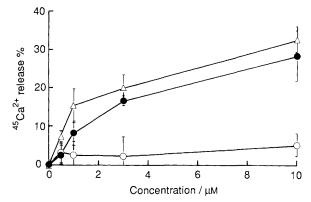
^a Department of Pharmacology, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55905, USA ^b Department of Chemistry and Behavioral Neuroscience, University of Pittsburgh, 1101 Chevron Science Center, Pittsburgh, PA 15260, USA


The synthesis of D-3-deoxy-*myo*-inositol 1,4,5-trisphosphate is reported together with its effect on Ca²⁺ release in permeabilized NIH 3T3 cells.

The importance of inositol phosphates for intracellular signalling is now well appreciated.^{1,2} Stimulation of cell surface receptors by a variety of ligands initiates the hydrolysis of the membrane-located phosphatidylinositol 4,5-bisphosphate to give initially D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5P₃) and diacylglycerol. Ins 1,4,5P₃ binds to specific recognition sites on the endoplasmic reticulum resulting in the mobilization of intracellular Ca2+ stores.³ The further metabolism of Ins 1,4,5P₃ is quite complex. The action of various kinases and phosphatases results in the conversion of Ins 1,4,5P₃ to many different inositol phosphates whose biochemical roles as yet remain to be elucidated.4-6 A potentially important transformation is through the action of a myoinositol 3-kinase to give myo-inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5P₄).¹ Ins 1,3,4,5P₄ may control the refilling of the Ins 1,4,5P₃ regulated intracellular Ca²⁺ pools.⁷ The extent to which the conversion of Ins 1,4,5P₃ to Ins 1,3,4,5P₄ occurs in different cell preparations used for studying inositol phosphate second messenger action is not clear, but agents capable of exhibiting Ins 1,4,5P₃-like agonist effects on Ca²⁺ release without being subject to metabolism by the 3-kinase pathway should serve as useful probes of inositol phosphate function. Accordingly, we elected to prepare D-3-deoxy Ins 1,4,5P₃ and to evaluate its ability to induce intracellular Ca²⁺ release from permeabilized NIH 3T3 cells.8

As shown in Scheme 1, quebrachitol was converted to its diacetonide 1, and the remaining free hydroxyl group of 1 was removed by the Barton deoxygenation procedure.⁹ Next, BBr₃ was used to remove all protecting groups, and the resulting compound, viburnitol, was converted to a 1:1.3 mixture of bis-acetonides 3 and 4, respectively. This mixture was benzylated, the trans-acetonide cleaved selectively, and the free hydroxy groups benzoylated to provide 5 and 6. At this stage, separation of the regioisomers could be accomplished readily by silica gel chromatography. Compound 5 was converted in turn to its tribenzoate 7 by acetonide cleavage followed by mono-benzoylation. The axial hydroxyl was protected as its ethoxyethyl ether, and the benzoate groups at positions 1, 4 and 5 were removed by base hydrolysis. Phosphorylation by use of sodium hydride and tetrabenzylpyrophosphate, followed by hydrogenolysis over PtO₂, exposure to water at 23 °C, and titration to a pH of 10 with 1 M NaOH gave the desired D-3-deoxy Ins 1,4,5P₃.

By carrying isomer **6** through an identical sequence of reactions, D-3-deoxy Ins 1,5,6P₃ was also obtained in similar overall yield.


Both compounds were evaluated for their effect on Ca^{2+} release using NIH 3T3 cells which were made permeable with medium containing 0.005% saponin as described previously ¹⁰ Preliminary studies showed that the uptake of ⁴⁵Ca²⁺ by the

Scheme 1 Synthesis of D-3-Deoxy-*myo*-Inositol 1,4,5-Trisphosphate Reagents and conditions: i, H₂C=C(OMe)CH₃, camphorsulphonic acid (CSA), DMF, 60 °C, 4 h (80-85%); ii, NaH, CS₂, THF, 23 °C, then MeI, 23 °C; iii, Buⁿ₃SnH, toluene, reflux, 1.5 h (89% overall yield); iv, BBr₃, CH₂Cl₂, 23 °C, 12 h (80%); v, H₂C=C(OMe)CH₃, CSA, DMF, 60 °C (88%); vi, NaH, PhCH₂Br, THF, 23 °C, 6 h (88%); vii, AcCl (cat.), MeOH/CH₂Cl₂ (1:2), 23 °C, 15 min (90%); viii, PhCOCl, pyr, 23 °C, 12 h (95%), separate by silica gel chromatography; ix, conc. HCl (cat.), MeOH, 23 °C, 3 h (95%); x, PhCOCl, pyr, 0 °C, 24 h (91%): xi, H₂C=CHOEt, pyridinium *p*-toluenesulphonate (cat.), CH₂Cl₂, 0-23 °C, 4 h (95%); xii, K₂CO₃, MeOH, 23 °C, 14 h (90%); xiii, NaH, tetrabenzylpyrophosphate, DMF, 0 °C, 8 h (50%); xiv, H₂ (1 atm), PtO₂, EtOH, 23 °C, 4 h; xv, H₂O, 23 °C, 3 h; xvi, tirtate to pH = 10 with 1 M NaOH (56% overall yield for steps xiv-xvi)

cells reached a plateau by 6 min. Ins $1,4,5P_3$ (Molecular Probes), 3-deoxy Ins $1,4,5P_3$ or 3-deoxy Ins $1,5,6P_3$ was added at 6.25 min, and the ${}^{45}Ca^{2+}$ remaining in the cells was measured at 7 min.

As is apparent from the dose response curve presented in Fig. 1, D-3-deoxy Ins $1,4,5P_3$ acts as a full agonist in releasing $^{45}Ca^{2+}$ from the 3T3 cells, while the 1,5,6-trisphosphate is

Fig. 1 Concentration-response curve for the release of ${}^{45}Ca^{2+}$ from non-mitochondrial stores of saponin-permeabilized NIH 3T3 cells by (\bigcirc) p-3-deoxy Ins 1,4,5P₃, (\bigcirc) p-3-deoxy Ins 1,5,6P₃, and (\triangle) Ins 1,4,5P₃. ${}^{45}Ca^{2+}$ release is expressed as a percent of the total ${}^{45}Ca^{2+}$ in the cells at 6 min. Values are the mean of 5 determinations and bars represent s.d. The protocols are as reported previously (Seewald *et al.*¹⁰)

inactive. Ins $1,3,4,5P_4$ did not release ${}^{45}Ca^{2+}$ in this system (results not shown). From the results of these studies we can, thus, conclude that a hydroxy group is not required at the 3-position of an inositol $1,4,5P_3$ in order to mobilize Ca^{2+} release from the endoplasmic reticulum. Since no second messenger role has been identified for Ins $1,5,6P_3$, it is not surprising that D-3-deoxy Ins $1,5,6P_3$ is inactive.

D-3-Deoxy Ins $1,4,5P_3$ exhibits the same agonist effects as Ins $1,4,5P_3$ on Ca²⁺ release, although its role is not further complicated by a possible simultaneous action of 3-kinase(s); this implies that the former compound may be preferred in place of Ins $1,4,5P_3$ in studying intracellular Ca²⁺ release in cells.[†]

We are indebted to the National Institutes of Health (NIH CA42286, G. P. and CA50175, A. P. K.) for partial support of these investigations.

Received, 5th July 1990; Com. 0/03024D

References

- 1 M. J. Berridge and R. F. Irvine, Nature (London), 1989, 341, 197.
- 2 J. W. Putney, H. Takemura, A. R. Hughes, P. A. Horstman and O. Thastrup, *FASEB, Monogr.*, 1989, **3**, 1899.
- 3 Y. Nishizuka, Nature (London), 1988, 334, 661.
- 4 For a recent review on the chemistry and pharmacology of other novel inositol phosphate analogues, see: S. R. Nahorski and B. V. L. Potter, *Trends Pharmacol. Sci.*, 1989, **10**, 139.
- 5 C. P. Downes, M. C. Mussat and R. H. Michell, *Biochem. J.*, 1982, **203**, 169.
- 6 R. C. Inhorn, V. S. Bansal and P. W. Majerus, Proc. Natl. Acad. Sci., USA, 1987, 84, 2170.
- 7 R. F. Irvine, R. M. Moor, W. K. Pollock, P. M. Smith and K. A. Wreggett, *Philos. Trans. R. Soc. London B*, 1988, **320**, 281; O. H. Petersen, *Cell Calcium*, 1989, **10**, 375; M. Whitaker, *Nature (London)*, 1990, **343**, 701.
- 8 For other recent work on the inositol phosphates, see: Y. Watanabe, A. Oka, Y. Shimizu and S. Ozaki, *Tetrahedron Lett.*, 1990, **31**, 2613 and references cited therein.
- 9 D. H. R. Barton and W. B. Motherwell, *Pure Appl. Chem.*, 1981, **53**, 1081.
- 10 M. J. Seewald, J. J. Schlager, R. A. Olsen, D. C. Melder and G. Powis, *Cancer Commun.*, 1989, 1, 151.

[†] Satisfactory ¹H and ¹³C NMR, IR, and high resolution mass spectral data were obtained for all new compounds.